武器的数字怎么读(推荐4篇)

个人学习 64 0

武器的数字怎么读 第1篇

数字工程生态系统涵盖了系统工程的技术流程和技术管理流程,自下而上三层嵌套:底层是技术数据和工程知识管理系统,包括工程标准、需求数据、设计和制造数据、试验数据、供应数据、使用数据、维护数据、工程能力数据等数据库;顶层是国防采办系统,包括_层面的采办里程碑决策,各军种层面的系统工程技术评审,项目办层面的成本分析、需求论证、成本/进度/性能权衡;中间层是贯穿数字工程生态系统的纽带,核心是跨生命周期的数字系统模型、数字线索和数字孪生,将兴趣系统的多领域、多物理、多层级分析工具集成,利用技术数据和工程知识以及系统的权威数字化表达,对成本、进度和性能、经济可承受性、风险以及风险缓解策略进行分析,支撑国防采办。

武器的数字怎么读 第2篇

从图中可以看到,当前和未来,_新型能力与原型部门(EC&P)和研制试验与鉴定部门(DT&E)都要使用CREATE和ERS等工具环境支撑国防采办寿命周期,至少在这张图上,两者是比数字系统模型、数字线索、数字孪生这三个数字工程生态系统核心纽带覆盖寿命周期更广的事物,那么中篇,我们就来看看CREATE和ERS这两个工具环境,怎么提升工程实践,如何支撑跨利益攸关方实施各项活动、协作和沟通。

武器的数字怎么读 第3篇

美国_推进数字工程,打造数字工程生态系统,将使现有采办流程和工程活动提升为基于模型、由数据驱动的集成化实践,极大提升生命周期各阶段分析能力和决策水平,支持武器系统的快速规划、敏捷设计、高效制造与精准保障,使美军超越快速变化的威胁和技术进步,更快地向作战部队交付先进能力,同时更具经济可承受性和持续保障性,支撑美国第三个“抵消战略”。

刘亚威——中国航空工业发展研究中心

武器的数字怎么读 第4篇

ERS计划将同时支撑数字工程战略的五大目标。第一,使用模型替代连续的、固定的需求生成方法;使用模型实现在物理样机和全尺度系统可用前,虚拟地生成样机、实验和试验解决方案;使用不断演进的模型,允许设计方案分析在寿命周期中提前;理解如何通过逆向建模击败一个概念。第二,模型天生就更能适应使命任务集和各种环境;权威真相源意味着“真正的事实”;ERS能够以大型、复杂和集成的数据集,足够快速和精确地理解并缓解风险。第三,探索集成的先进工程模型的新概念;将密集的人工流程替代为集合了数据和技术文件的自动化工作流;探索数字工程使用增加的需求下新的决策分析方法,使之可生成反映整个寿命周期的真实备选方案;利用机器学习分析海量和复杂的数据集,包含来自大量源的各种数据类型;从架构上与知识管理集成。第四,在高性能计算中构建整个数据生态系统架构;构建通用化且可重用的工作流引擎;构建复杂组织体层级的网络门户;围绕数据组织软件工具;创建支持决策过程的可视化技术。第五,理解采用数字生态系统不会消除用户选择、管理、控制和使用相应工具的责任;对于在一个协同、集成、基于数字模型的环境中执行活动获得信心;学习向第三方清晰地表达问题、工作流和模型边界条件;理解如何适当地减少对物理实验的依赖。

抱歉,评论功能暂时关闭!